Definitions | type List, f(a), x(s), (x l), x:AB(x), P Q, x:A. B(x), x:A B(x), x:A. B(x), P Q, P Q, P & Q, s = t, Type, t T, , Dec(P), SqStable(P), T, A, a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), x.A(x), {x:A| B(x)} , finite-type(T), x. t(x), b, , left + right, P Q, ff, tt, case b of inl(x) => s(x) | inr(y) => t(y), False, inr x , True, inl x , filter(P;l) |